点击上方“小白学视觉”,选择加"星标"或“置顶”
(资料图片仅供参考)
重磅干货,第一时间送达
在本文中,使用Python编程语言和库Keras和OpenCV建立CNN模型,成功地对交通标志分类器进行分类,准确率达96%。开发了一款交通标志识别应用程序,该应用程序具有图片识别和网络摄像头实时识别两种工作方式。
本文的GitHub:https://github.com/Daulettulegenov/TSR_CNN
提供一个开源的交通标志的数据集,希望能够帮助到各位小伙伴:http://www.nlpr.ia.ac.cn/pal/trafficdata/recognition.html
近年来,计算机视觉是现代技术发展的一个方向。这个方向的主要任务是对照片或摄像机中的物体进行分类。在通常的问题中,使用基于案例的机器学习方法来解决。本文介绍了利用机器学习算法进行计算机视觉在交通标志识别中的应用。路标是一种外形固定的扁平人造物体。道路标志识别算法应用于两个实际问题。第一个任务是控制自动驾驶汽车。无人驾驶车辆控制系统的一个关键组成部分是物体识别。识别的对象主要是行人、其他车辆、交通灯和路标。第二个使用交通标志识别的任务是基于安装在汽车上的DVRs的数据自动绘制地图。接下来将详细介绍如果搭建能够识别交通标志的CNN网络。
导入必要的库
# data analysis and wranglingimport numpy as npimport pandas as pdimport osimport random# visualizationimport matplotlib.pyplot as pltfrom PIL import Image# machine learningfrom keras.models import Sequentialfrom keras.layers import Densefrom tensorflow.keras.optimizers import Adamfrom keras.utils.np_utils import to_categoricalfrom keras.layers import Dropout, Flattenfrom keras.layers.convolutional import Conv2D, MaxPooling2Dimport cv2from sklearn.model_selection import train_test_splitfrom keras.preprocessing.image import ImageDataGenerator
加载数据
Python Pandas包帮助我们处理数据集。我们首先将训练和测试数据集获取到Pandas DataFrames中。我们还将这些数据集组合起来,在两个数据集上一起运行某些操作。
# Importing of the Imagescount = 0images = []classNo = []myList = os.listdir(path)print("Total Classes Detected:",len(myList))noOfClasses=len(myList)print("Importing Classes.....")for x in range (0,len(myList)):myPicList = os.listdir(path+"/"+str(count))for y in myPicList:curImg = cv2.imread(path+"/"+str(count)+"/"+y)curImg = cv2.resize(curImg, (30, 30))images.append(curImg)classNo.append(count)print(count, end =" ")count +=1print(" ")images = np.array(images)classNo = np.array(classNo)
为了对已实现的系统进行适当的训练和评估,我们将数据集分为3组。数据集分割:20%测试集,20%验证数据集,剩余的数据用作训练数据集。
# Split DataX_train, X_test, y_train, y_test = train_test_split(images, classNo, test_size=testRatio)X_train, X_validation, y_train, y_validation = train_test_split(X_train, y_train, test_size=validationRatio)
该数据集包含34799张图像,由43种类型的路标组成。这些包括基本的道路标志,如限速、停车标志、让路、优先道路、“禁止进入”、“行人”等。
# DISPLAY SOME SAMPLES IMAGES OF ALL THE CLASSESnum_of_samples = []cols = 5num_classes = noOfClassesfig, axs = plt.subplots(nrows=num_classes, ncols=cols, figsize=(5, 300))fig.tight_layout()for i in range(cols):for j,row in data.iterrows():x_selected = X_train[y_train == j]axs[j][i].imshow(x_selected[random.randint(0, len(x_selected)- 1), :, :], cmap=plt.get_cmap("gray"))axs[j][i].axis("off")if i == 2:axs[j][i].set_title(str(j)+ "-"+row["Name"])num_of_samples.append(len(x_selected))
# DISPLAY A BAR CHART SHOWING NO OF SAMPLES FOR EACH CATEGORYprint(num_of_samples)plt.figure(figsize=(12, 4))plt.bar(range(0, num_classes), num_of_samples)plt.title("Distribution of the training dataset")plt.xlabel("Class number")plt.ylabel("Number of images")plt.show()
数据集中的类之间存在显著的不平衡。有些类的图像少于200张,而其他类的图像超过1000张。这意味着我们的模型可能偏向于过度代表的类别,特别是当它对自己的预测不自信时。为了解决这个问题,我们使用了现有的图像转换技术。
为了更好的分类,数据集中的所有图像都被转换为灰度图像
# PREPROCESSING THE IMAGESdef grayscale(img):img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)return imgdef equalize(img):img =cv2.equalizeHist(img)return imgdef preprocessing(img):img = grayscale(img) # CONVERT TO GRAYSCALEimg = equalize(img) # STANDARDIZE THE LIGHTING IN AN IMAGEimg = img/255 # TO NORMALIZE VALUES BETWEEN 0 AND 1 INSTEAD OF 0 TO 255return imgX_train=np.array(list(map(preprocessing,X_train))) # TO IRETATE AND PREPROCESS ALL IMAGESX_validation=np.array(list(map(preprocessing,X_validation)))X_test=np.array(list(map(preprocessing,X_test)))
数据增强是对原始数据集进行增强的一种方法。数据越多,结果越高,这是机器学习的基本规律。
#AUGMENTATAION OF IMAGES: TO MAKEIT MORE GENERICdataGen= ImageDataGenerator(width_shift_range=0.1, # 0.1 = 10% IF MORE THAN 1 E.G 10 THEN IT REFFERS TO NO. OF PIXELS EG 10 PIXELSheight_shift_range=0.1,zoom_range=0.2, # 0.2 MEANS CAN GO FROM 0.8 TO 1.2shear_range=0.1, # MAGNITUDE OF SHEAR ANGLErotation_range=10) # DEGREESdataGen.fit(X_train)batches= dataGen.flow(X_train,y_train,batch_size=20) # REQUESTING DATA GENRATOR TO GENERATE IMAGES BATCH SIZE = NO. OF IMAGES CREAED EACH TIME ITS CALLEDX_batch,y_batch = next(batches)
热编码用于我们的分类值y_train、y_test、y_validation。
y_train = to_categorical(y_train,noOfClasses)y_validation = to_categorical(y_validation,noOfClasses)y_test = to_categorical(y_test,noOfClasses)
使用Keras库创建一个神经网络。下面是创建模型结构的代码:
def myModel():model = Sequential()model.add(Conv2D(filters=32, kernel_size=(5,5), activation="relu", input_shape=X_train.shape[1:]))model.add(Conv2D(filters=32, kernel_size=(5,5), activation="relu"))model.add(MaxPooling2D(pool_size=(2, 2)))model.add(Dropout(rate=0.25))model.add(Conv2D(filters=64, kernel_size=(3, 3), activation="relu"))model.add(Conv2D(filters=64, kernel_size=(3, 3), activation="relu"))model.add(MaxPooling2D(pool_size=(2, 2)))model.add(Dropout(rate=0.25))model.add(Flatten())model.add(Dense(256, activation="relu"))model.add(Dropout(rate=0.5))model.add(Dense(43, activation="softmax"))model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])return model
# TRAINmodel = myModel()print(model.summary())history = model.fit(X_train, y_train, batch_size=batch_size_val, epochs=epochs_val, validation_data=(X_validation,y_validation))
上面的代码使用了6个卷积层和1个全连接层。首先,在模型中添加带有32个滤波器的卷积层。接下来,我们添加一个带有64个过滤器的卷积层。在每一层的后面,增加一个窗口大小为2 × 2的最大拉层。还添加了系数为0.25和0.5的Dropout层,以便网络不会再训练。在最后几行中,我们添加了一个稠密的稠密层,该层使用softmax激活函数在43个类中执行分类。
在最后一个epoch结束时,我们得到以下值:loss = 0.0523;准确度= 0.9832;Val_loss = 0.0200;Val_accuracy = 0.9943,这个结果看起来非常好。之后绘制我们的训练过程
#PLOTplt.figure(1)plt.plot(history.history["loss"])plt.plot(history.history["val_loss"])plt.legend(["training","validation"])plt.title("loss")plt.xlabel("epoch")plt.figure(2)plt.plot(history.history["accuracy"])plt.plot(history.history["val_accuracy"])plt.legend(["training","validation"])plt.title("Acurracy")plt.xlabel("epoch")plt.show()score =model.evaluate(X_test,y_test,verbose=0)print("Test Score:",score[0])print("Test Accuracy:",score[1])
#testing accuracy on test datasetfrom sklearn.metrics import accuracy_scorey_test = pd.read_csv("Test.csv")labels = y_test["ClassId"].valuesimgs = y_test["Path"].valuesdata=[]for img in imgs:image = Image.open(img)image = image.resize((30,30))data.append(np.array(image))X_test=np.array(data)X_test=np.array(list(map(preprocessing,X_test)))predict_x=model.predict(X_test) pred=np.argmax(predict_x,axis=1)print(accuracy_score(labels, pred))
我们在测试数据集中测试了构建的模型,得到了96%的准确性。
使用内置函数model_name.save(),我们可以保存一个模型以供以后使用。该功能将模型保存在本地的.p文件中,这样我们就不必一遍又一遍地重新训练模型而浪费大量的时间。
model.save("CNN_model_3.h5")
接下来给大家看一些识别的结果
好消息!
小白学视觉知识星球
开始面向外开放啦
下载1:OpenCV-Contrib扩展模块中文版教程在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。下载2:Python视觉实战项目52讲在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。下载3:OpenCV实战项目20讲在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。交流群
欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三+上海交大+视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~
Copyright 2015-2023 亚洲外贸网 版权所有 备案号: 京ICP备2021034106号-51 联系邮箱:5 516 538 @qq.com